Baldwinian learning in clonal selection algorithm for optimization

نویسندگان

  • Maoguo Gong
  • Licheng Jiao
  • Lining Zhang
چکیده

Artificial immune systems are a kind of new computational intelligence methods which draw inspiration from the human immune system. Most immune system inspired optimization algorithms are based on the applications of clonal selection and hypermutation, and known as clonal selection algorithms. These clonal selection algorithms simulate the immune response process based on principles of Darwinian evolution by using various forms of hypermutation as variation operators. The generation of new individuals is a form of the trial and error process. It seems very wasteful not to make use of the Baldwin effect in immune system to direct the genotypic changes. In this paper, based on the Baldwin effect, an improved clonal selection algorithm, Baldwinian Clonal Selection Algorithm, termed as BCSA, is proposed to deal with optimization problems. BCSA evolves and improves antibody population by four operators, clonal proliferation, Baldwinian learning, hypermutation, and clonal selection. It is the first time to introduce the Baldwinian learning into artificial immune systems. The Baldwinian learning operator simulates the learning mechanism in immune system by employing information from within the antibody population to alter the search space. It makes use of the exploration performed by the phenotype to facilitate the evolutionary search for good genotypes. In order to validate the effectiveness of BCSA, eight benchmark functions, six rotated functions, six composition functions and a real-world problem, optimal approximation of linear systems are solved by BCSA, successively. Experimental results indicate that BCSA performs very well in solving most of the test problems and is an effective and robust algorithm for optimization. 2009 Elsevier Inc. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybrid learning clonal selection algorithm

Artificial immune system is a class of computational intelligence methods drawing inspiration from human immune system. As one type of popular artificial immune computing model, clonal selection algorithm (CSA) has been widely used for many optimization problems. CSA mainly generates new schemes by hyper-mutation operators which simulate the immune response process. However, these hyper-mutatio...

متن کامل

Multi-objective immune algorithm with Baldwinian learning

By replacing the selection component, a well researched evolutionary algorithm for scalar optimization problems (SOPs) can be directly used to solve multi-objective optimization problems (MOPs). Therefore, in most of existing multi-objective evolutionary algorithms (MOEAs), selection and diversity maintenance have attracted a lot of research effort. However, conventional reproduction operators ...

متن کامل

A Classification Method for E-mail Spam Using a Hybrid Approach for Feature Selection Optimization

Spam is an unwanted email that is harmful to communications around the world. Spam leads to a growing problem in a personal email, so it would be essential to detect it. Machine learning is very useful to solve this problem as it shows good results in order to learn all the requisite patterns for classification due to its adaptive existence. Nonetheless, in spam detection, there are a large num...

متن کامل

Intelligent application for Heart disease detection using Hybrid Optimization algorithm

Prediction of heart disease is very important because it is one of the causes of death around the world. Moreover, heart disease prediction in the early stage plays a main role in the treatment and recovery disease and reduces costs of diagnosis disease and side effects it. Machine learning algorithms are able to identify an effective pattern for diagnosis and treatment of the disease and ident...

متن کامل

Learning and optimization using the clonal selection principle

 The clonal selection principle is used to explain the basic features of an adaptive immune response to an antigenic stimulus. It establishes the idea that only those cells that recognize the antigens are selected to proliferate. The selected cells are subject to an affinity maturation process, which improves their affinity to the selective antigens. In this paper, we propose a computational i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Inf. Sci.

دوره 180  شماره 

صفحات  -

تاریخ انتشار 2010